Welcome to On Statistics

  • How to Use the Log-Normal Distribution in Python

    How to Use the Log-Normal Distribution in Python

    The log-normal distribution is a continuous probability distribution that is defined as the logarithm of a random variable that follows a normal distribution. This distribution is commonly used in various fields such as finance, physics, engineering, and economics due to its ability to model positively skewed data. In this article, we will discuss the underlying…

  • How to Calculate Correlation in Python

    How to Calculate Correlation in Python

    Correlation is a statistical measure that describes the degree to which two variables are related to each other. In other words, it measures the strength and direction of the linear relationship between two variables. Correlation analysis is widely used in various fields such as finance, economics, engineering, and social sciences to identify trends, make predictions,…

  • How to Transform Data in Python

    How to Transform Data in Python

    Transforming data is an essential aspect of data analysis and machine learning. It involves converting raw data into a format that is more suitable for modeling and further analysis. In this article, we will discuss several techniques for transforming data using Python, with a focus on statistical concepts and practical applications. Statistical Concepts and Alternative…

  • How to Create Heatmaps in Python

    How to Create Heatmaps in Python

    Heatmaps are graphical representations of data where the individual values are represented as colors. They are commonly used in data analysis to identify trends, patterns, and correlations in large datasets. In this article, we will explore how to create heatmaps in Python using the Seaborn and NumPy libraries. Statistical Background A heatmap is a type…

  • How to Use the Poisson Distribution in Python

    How to Use the Poisson Distribution in Python

    What is the Poisson Distribution? The Poisson distribution is a discrete probability distribution that models the probability of a given number of events occurring in a fixed interval of time or space, given the average rate of occurrence of the events. It is often used when the number of occurrences is small and the events…